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COMPUTATION OF ATTACHED FLOW PAST AN AIRFOIL PROFILE AT HIGH REYNOLDS NUMBERS* 

S.A. VELICHKO and YU.B. LIFSHITZ 

A mathematical model of an attached flow of an incompressible fluid past 
an airfoil profile at high Reynolds numbers is proposed. The model 
enables one to determrne the effect of vrscosrty on the magnitude of 
aerodynamic characteristics. Not only is the displacing action of the 
turbulent boundary layer and wake on the external flow taken into 
account, but the solution in the neighbourhood of the trailing edge is 
also studied, and this makes it possible to formulate a more accurate 
analogue of the Chaplygin-Zhukovskii condition. Comparison of numerical 
results with experimental data shows that the accuracy of the results is 
comparable with that of experiment. The flow past a profile is usually 
computed by solving a sequence of problems arising when the concept of 
the Prandtl boundary layer is applied regularly. In this approach the 
external problems describe the flow of an inviscid fluid past 
modifications of the profile, which take into account the displacement 
of the boundary layer and distortion of the wake. Their unique solution 
satisfies the additional demand of regularity. To a first approximation 
such a demand is represented by the Chaplygin-Zhukovskii condition. To 
a second approximation the condition is obtained by analysing the 
solution of the Navier-Stokes equations near the trailing edge of the 
profile. In the present paper the analysis is carried out for a profile 
with a sharp trailing edge, in which the angle between the tangents is 
not zero. 

1. Let us consider the flow of an incompressible fluid past an airfoil profile. We shall 
regard the segment of the straight line between the leading and trailing edge of length L as 
the chord of the profile, and the angle a between the direction of the velocity at infinity 

u, and the chord, as the angle of attack. We shall refer all linear parameters to L, the 
velocity to U,, and the pressure p to the square of the pressure head pLJwa where p is 
the density of the fluid. We shall place the origin of a Cartesian coordinate system xy at 
the trailing edge of the profile, and direct the x axis along the bisector of the anglei (8< 
1) within it. 

We shall consider the solution of the problem of the flow of an ideal incompressible fluid 
past a profile in the plane 6 = rexp (io). The outside of the profile will map onto the 
outside of the unit circle / 5 I= 1 in this plane, and the trailing edge of the profile will 
correspond to the point 5=1. 

We can assume, without loss of generality, that such a mapping can be carried out using 
the method described in /I/. We shall use the Karman-Trefftz transformation 

(E - Eo)/(5 + 50) = [(z - so - k,E,)l(z - 20 -+- kr$,)]"Q, k, = 2 - o/z 

to map the profile onto the part of the plane bounded by an almost spherical contour. After 
this we will seek the coefficients Aj and BJ of the Theodorsen-Garrick transformation 
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We can write the derivative of the complex potential in the neighbourhood of the point 
z=O* with p<l, in the form 

The coefficient kO, which is equal to the sum of two terms, one of which is proportional 
to the circulation and the other to the load at the trailing edge at zero lift, appears in the 
estimate of the curvature of the stream line emerging from the trailing edge: k,x-‘Ja + O(1). 

2. Let us consider the solution of the boundary-layer equations near the trailing edge, 
on the upper surface of the profile, where the flow is retaxded. We shall take U,,, as the 

unit velocity, and refer the coordinate y, the transverse component of velocity v and turbulent 
friction intensity z to characteristic thickness 6 of the boundary layer. Then the equations 
can be written in the form 

.~+,A!+++ 
aw 

au 1 .".- 
a+ -I- ay -0 (2.1) 

When y -= 0 u = u = 0, while when y-t CC we obtain from (1.11, for small ~(0, 

u = 1 -4-f (X), p = p*o -f (4 
(2.2) 

f (z) = 2ke (--x}“* -+ (2~)~~ f~ (l + In 1 a I) -I- . . . 

The order of magnitude of k, should be determined in accordance with the assumption that 
the flow is attached. In the case of laminar flow, 
of the trailing edge when k, = 0 (R-‘/l@) /2/(R 

the stream becomes detached in the region 
is the Reynolds number). Therefore, an attached 

laminar flow is possible only when k,<i. When the flow separates from a smooth surface, 
the pressure distribution near the point of separation is given by the first two terms of (2.2), 
and in the laminar flow we again have k, = 0 (R-‘11*)/3/.The experiment, however, indicates that 
the point of separation of a turbulent flow lies at an appreciable distance further downstream 
than the point of separation of the laminar boundary layer. This compels us to put k,= O(1) 
in the case of turbulent separation from a smooth surface 141, and assume that attached flows 
past a profile are possible when k, == OfIt. 

We shall further assume that k, = O(1), in which case the solution (2.1), (2.2) in the 
basic part of the boundary layer can be written in the form 

u = U,(Y) + 2ko (-x)“* ull (Y) -t pulz (y) In (-z) + . . 
u = kc, (-~)-“a ~11 (Y) + Pulz (Y)(-4-l + . . . 

(2.3) 

The functions appearing in it are expressed in terms of U,(y). When y decreases, U,(y) 
also tends to zero and the repesentation (2.3) becomes invalid. 

The flow in the neighbourhood of the trailing edge can be analysed in a natural way using 
asymptotic expansions in the small parameter 6. We find here that its form depends very much 
on the size of the boundary-layer region generating the principal term of the variation in the 
displacement thickness. In the laminar boundary layer the transverse dimension of this region 
is of the order of o(aq /5/. In the turbulent layer, where the mean velocity profile can 
be approximated, as y-to, by the power function 

U, (y) == by’;“, n > 2 (2.4) 

the interaction becomes supercritical /6/ and the change in the displacement thickness is 
determined by the main part of the boundary layer. This means that formulas (2.3) are suf- 
ficient for calculating 6* as s-O_ 

The inclination of the stream lines in the boundary layer is of the order of k,6(-+‘/a. 
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when z-O-. On the other hand, the inclination of the stream lines in the outer potential 
flow at z-o+ is given by the quantity 2k&. Therefore, in the region of dimension 

x = 0 (IS), where these quantities are of the same order, the interaction between the outer 

flow and the boundary layer plays a decisive role. In order for the effect of rotating the 
flow by an angle p not to change the order of the inclination of the stream lines, we shall 
put 0 = 0 (V). 

An entirely different situation occurs when the flow becomes detached in the region of 
the trailing edge of the profile. In this case the displacement thickness increases on 
approaching it logarithmically /4/ and the value of A calculated from (2.2) becomes appreci- 
ably greater than unity. Therefore the question of whether to use the boundary based on 
formulas (2.4) and (2.5) or the theory given in /4/, depends on the magnitude of A. Let us 
find .I using the exerimental data given in /7/ for the velocity profiles in the cross-section 
of the wake passing through the trailing edge of the profile NACA 0012 obtained for the case 
of subsonic flow past it, at an angle of attack 3, 6, 9" and R = 3.8.106. We will find that 
the corresponding values of A are 1, 1.5 and 5.2, and this means that formula (2.6) can be 
used. 

3. The flow past a profile outside the boundary layer and the wake is described, also in 
the second approximation, by the solution of the Laplace equation in the z plane with a cut 
along the stream line emerging from the trailing edge of the profile. The effect of the 
displacing action of the boundary layer and wake, and of the curvature of the wake on the 
potential flow should be taken into account in such a manner as to satisfy the boundary con- 
ditions at the profile, as well as at the cut. They are given in /8/: 

(3.1) 

The conditions for the jumps in the values of the functions denoted by A must hold at 
the cut, s and n are the arc length and the outer normal, x (s) is the curvature of the 
stream line, V, is the velocity at the outer boundary of the boundary layer, and 9 is the 
thickness of the loss of momentum. 

The solution of the boundary-value problem (3.1) is obtained using Cauchy-type integrals 
in the 5 plane where the circle corresponds to the contour of the profile. Here it is con- 
venient to use the circle theorem /9/, according to which we must place on the line obtained 
by inverting the cut, sources of the same sign and vortices of opposite sign, and add to them 
the total vortex and source at the centre of the circle. The solution is obtained according 
to the Hilbert formula connecting the limit values of the real and imaginary parts of the 
analytic function. We will write an expression for correcting the tangential velocity com- 
ponent in the 5 plane 

Here o is the 
ordinate of a point 
and D = 1 dzldl; I, A, 

angular coordinate of a point lying on the circle, z is the complex co- 
on the wake stream line O'D', do 
is an arbitrary constant. 

is the differential of the arc length 

We shall investigate the behaviour of (3.2) as z--f 0 (o-+0). 
(dV,G*ldo),- # (dVeG*ldw),+ and DVp (6* + 0) # 0 at the point 0’. 

In the general case 
This leads to the need to 

remove the logarithmic singularity from (3.2). 
(1.1) into account, 

Passing to the physical plane we obtain, taking 

outer region, at 
an expression for correcting the longitudinal velocity component in the 

s<O, in the form 

V, (x,0 +) = 6 (- x)-‘I*[ A - n-‘k,U,,h, In (- 5) + o (I)] 

h, = +-I- (U;* - U,?) dy 
-m 

The above expression shows that 
mation is, in general, not bounded. 

the solution of the external problem in the second approxi- 
The constant A related to A, is calculated from the 
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additional condition that the flow past the trailing edge 
condition is realized when the solution is constructed in 
of 0 (6). 

of the profile is unbroken, and this 
the region of dimensions of the order 

4. Let us now describe the flow in the 6-neighbourhood of the trailing edge of the 
profile. To do this we shall introduce the independent variables z2 = xl& Y, = y/6 and put 
fi = pOs'/.. The form of the expansions of the functions sought in small parameter 6 is 
governed in this region by the relations (2.3) : 

UoO-‘Vx = U. (h) + 6% (x2, Y?) ~- P In 6u,, (yz) + 0 (6) (4.1) 
u,,-IV, = 6'lU L (% Y?) '~ 0 (6) 

U&' (p - PoO) = -(2n)-' P (1 + In 6) L, 6'lep, (z2, yz) + 0 (6) 

Substituting (4.1) into the equations of continuity and of projections of the momentum, 
we obtain a system of three equations in UP, rz and p2. respectively. Substituting the 
unknown function U2 = wu, and eliminating Us. we reduce this system to a single, linear, 
second-order partial differential equation 

(4.2) 

and a relation for the pressure 
ap,iax, = U,=dWl’dy,! (4.3) 

The solution of Eq.(4.2) satisfies the condition of zero flow at the boundaries of the cut 
along the negative half-axis Y, = 0, ~~(0 

w (x,, Ok) =~ -flo:2 (4.4) 

and the condition of increase at infinity, which follows from matching with (1.1) 

pz + iW -+ 2ikozz”: - (2~)~ fi,,lnz,. ;? = .r2 + iY, -_) 00 (4.5) 

Conditions (4.4) and (4.5) are sufficient to construct a unique solution of the boundary 
value problem only in the class of functions bounded when Z.2 0. Such a choice of the class 
of functions is equivalent to the requirement that a stream line emerge from the trailing edge. 
Within the scale of the thickness of the boundary layer, satisfying this requirement is less 
natural than the Chaplygin-Zhukovskii condition, but it enables us to ignore the neighbourhood 
of the trailing edge of the profile where the inertial terms are of the same order as the 
turbulent transfer terms. This simplifies the problem appreciably, although.the assumption 
made must be checked by comparing the results obtained with experimental data. 

In /lo, ll/, where an analogous problem was discussed, additional assumptions were made 
concerning the order of deviation of ucl (YP) from unity. This made is possible to construct 
a solution of problem (4.2)-(4.5) in the form of an expansion in a small parameter. However, 
in order to ensure the necessary accuracy, they had to take three terms of this expansion. 
No such assumptions are made in the present paper, and problem (4.2)-(4.5) is solved exactly 
using the representation in the form of a Fourier integral 

+m 
w=& 1 v (yz) exp (- ihx,) dh 

-cs 

Substituting (4.6) into (4.2), we obtain a second-order ordinary differential equation 

for V (Y*) 

(4.7) 

Its solutions, bounded as Yz-t_m, satisfy the conditions 

dV/dy, = -1 h 1 V sign y,, y, +.&co (4.8) 

In order to obtain the boundary conditions at y, = O&, we shall consider the half-sum 

of the derivatives awiay, at y,==O_t. According to (4.4) this sum is equal to zero on 
the negative half-axis r,. Therefore, its Fourier transformation represents the limit value, 
on the real axis Im1= 0, of the function analytic in the upper half-plane. Denoting this 
value by @,+ (h) we obtain, from (4.61, 
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@+ (h) = -ih IV (O+) - V (O-)1/2 

We determine the function a-(h) in exactly the same manner. This function represents 

the limit value, on the real. axis, of the function analytic in the lower half-plane and is 
also the Fourier transform of the half-difference Of dp,idx, at y, = O_+. The expression 

for it in terms of V and dVf&, follows directly from relations (4.3) and (4.6). The third 
relation connecting the values of V at y, == Ok is obtained from the Fourier transform of 
the difference W(J,, 0 +) - wfx,. 0-t. 

Let us further introduce the function 

Q(ya)= --KG sign y2 

According to (4.7) the above function satisfies the equation 

U~~~Q~d~~ ; 1 A I(Qz - Un4) sign g2 (4.9) 

The boundary conditions Q(j-) - 1 wh;.i; ;I..; from (4.81, enable us to construct 
integral curves of this equation at Ya ( 0 . In what follows, the limit values of 

Q1 = Q (O+, h), Qa = Q (0--, h) will be of interest. The values are obtained by numerical 
integration of Eq.(4.9), and are bounded at all values of X. The manner of their decay as 

h+cQ is established /12/ using the method of matching the asymptotic expansions. 
Let us now eliminate V(Ok) from the three equations listed above, containing the func- 

tions CD+, @- and the Fourier transform of the difference W(xz,Of). As a result we obtain 

the following linear relation: 
qB+(h)=**-(++L~ (4.10) 

which represents an inhomogeneous problem of conjugation of the analytic function along the real 
axis.In the case of the flow past a profile in which the angle between the tangents at the 

trailing edge is zero fiO = 0, a homogeneous conjugation problem with the same expression for 
the coefficient was formulated and solved in /12/. It was shown that when condition (4.5) was 
satisfied, its index was equal to zero. For this reason the inhomogeneous problem has a unique 
solution, and this makes it possible to write the pressure pz(x/8) at the surface of the profile 
in the neighbourhood of the trailing edge in the form of Fourier integrals. The resulting 
formulas are, however, very bulky, and are not given here. 

The solution Constructed is of interest in its own right but its chief importance is in 
determining the constant A,in (3.2) which enables us to close the external problem. This Con- 
stant, proportional to the correction to the circulation is calculated by asymptotic joining 
of the expression for ~~(~16) for large values of the argument with two terms of the expansion 
of the pressure in the external region. The asymptotic behaviour of the functions defined by 
the Fourier integrals for large values of the argument is calculated by the Stationary phase 

method. This requires a knowledge of the form of the kernel for small h and simplifies the 
final formulae considerably. 

The solution Obtained does not satisfy the condition of adhesion at the boundary. An 
additional region of size x = 0 (6), y = Q (&1+n/4) in which the equations of motion of the fluid 
have the structure of the Prandtl equations, offers the possibility of continuing the solution 
right up to the body. As we said before, a solution in this region has not been constructed, 
although its existence is assumed. When this assumption holds, the pressure distribution over 
the profile with a length dimension of the order of O(6), differs from pz only in terms of 
the higher order of smallness. 

5. Since, in order to satisfy the boundary conditions at the cut and at the corresponding 
line within the profile contour, resulting from inversion transformation, the sources and 
vortices were distributed along them, and the condition of impermeability at the surface was 
replaced by the first relation of (3.1), it follows that the expression for the pressure 
forces has a more complicated form than the Zhukovskii theorem would require. In particular, 
the presence of the Sources at the profile contour and outside it results in the fact, that 
the projection of the pressure force on the direction of the incoming flow becomes non-zero. 
To a first approximation this projection is equal to zero fd' Alembert's paradox). Moreover, 
it should be remembered that in the neighbourhood of the trailing edge of the profile the flow 
parameters vary according to the inner solution. Therefore, 
we construct a composite, 

in Order to determine the pressure, 
two-term expansion of the pressure at the surface of the profile. 

We also note that completing the solution of the outer problem in the second approximation 
requires that the Pressure at the surface of the body be recomputed, taking into account its 
drop across the boundary layer determined by the last equation of (3.1). In the case of a flow 
past an airfoil profile the correction is found to be vanishingly small everywhere outside the 
neighbourhood of the trailing edge. This is connected with the fact that the curvature of the 
profile outside the bow is small, as well as the displacement thickness and loss of momentum 
in the bow region where the boundary layer is very thin. 
is corrected within the composite expansion ifself. 

Near the trailing edge the pressure 

6. Using the two term asymptotic expansion of the solution of the problem ofinc~mp~~~~- 
ible fluid flow past a profile at high Reynolds numbers, we wrote a program for determining 
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its aerodynamic characteristics. The program includes a conformal transformation, computation 
of the boundary layer and wake, and corrections to the lift and general drag of the profile. 
The laminar boundary layer is computed from the point at which the flow fans out in the region 
of the leading edge using one of the versions of the method of integral Dorodnitsyn relations 
/13/, and the position of transition points on the upper and lower surface of the profile is 
determined using the empirical method from /14/. The position of these points may be fixed 
earlier. The integral method of /15/ is used to compute the turbulent boundary layer and wake. 
This is followed by determining the values of the functions Q1 (a) and Qa (1) by solving 
problem (4.7), (4.8) by Euler's method. The velocity profile of the boundary layer is given 
in the form 

Here R,is the Reynolds number calculated from the thickness of the boundary layer, II* is 

the dynamic velocity referred to the velocity of flow at the outer boundary of the boundary 
layer, and the constants C and k are the same as in the formula for the velocity profile due 
to Coles 1X/. Formula (6.1) is obtained by replacing, in Coles' expression for the velocity 
profile, the logarithmic function by the power function for n$+j. The number n is determined 
by the conditions at the boundaries of the boundary layer t~,(i)==i, d',(O) = 0. 

Fig.1 

Fig.2 

Fig.3 

Since the expression for the velocity profile was obtained empirically, it follows that 
it can be approximated by another expression without violating any laws. It is interesting to 
notethatthe law of velocity written in the form /17/ 

u* (Y*) = u*c, In) Y;'" OXP (a/n) 

yields, on comparing it with (6.1) as YZ-+O~ the expression 

c, (n) = (n/k) exp (Ckin - 1) 

which approximates the values given in the table in /7/ for various TL, with 5% accuracy. 

7. The theory constructed here of attached flow of a viscous fluid past a profile at high 
Reynolds numbers in the presence of a turbulent boundary layer, takes into account all terms 
of the order of 0(6*). Certain assumptions which were made during its formulation and numerical 
realization, can only be validated by comparing the results obtained with experimental data. 
Such a comparison will also yield the relative accuracy of the mathematical model used. At 
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present, a fairly large number of computations have been carried out, and we show three of 
them in Figs.l-3 in the form of the relations cy (a) and polars cII (cJ. 

Fig.1 shows results for the profile NACA 64,-415, with Reynolds number equal to 6.108. 
The profile has zero angle between the tangents to the trailing edge, a considerable region of 
laminar flow at the upper surface, and a loaded rear part. Fig.2 shows the characteristics 
of the profile NACA4412 with the same Reynolds number. In this case the aperture angle at 
the trailing edge is non-zero, and its contribution towards the correction of the circulation 
amounts to 30% of its value. Moreover, the rearrangement of the flow at the trailing edge 
generates quite a large proportion of resistance due to pressure. Fig.3 shows the character- 
istics of the flows with a fixed transition point. 

The points in Figs-l-3 correspond to experimental data /la/, and the dashed lines represent 
the values of the lift coefficient obtained without taking the viscosity into account. Com- 
paring the results obtained we find that the error of the proposed theory does not exceed 2% 
when computing c#, and does not exceed 10% when computing the drag coefficient. These values 
are comparable with the error of the experiment itself. 
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